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DCA-sensitized electron-transfer photooxygenation of tetraphenyl- 
allene (1) in acetonitrile yields benzophenone (31 and polymeric mate- 
rial. In-acetone, the yield of 3 is better than tiice the amount obtain- 
ed in acetonitrile and very litfle of polymeric material is observed. If 
the acetone solution is worked-up immediately after the oxygen consump- 
tion ceased, 1,3-dihydroperoxy-1,1,3,3-tetraphenyl-2-propanone (81 is 
isolated. Its formation is proposed to occur via the peroxyallyl ziitter- 
ion 4 and the tetraphenylcyclopropanone (7) (Scheme 11. 8 decomposes 
slowTy into 3, and CO + CO2 (3:l) in neutraT solution; in the presence 
of a base, decomposition is fast, resulting in the formation of two mo- 
lecules of 3, one molecule of water, and one molecule of C02. Decomposi- 
tion of 8 iiithe presence of various fluorescers and a base yields a 
bright fruorescence of the additives. 

Some years ago, Greibrokk' reported that tetraphenylallene (1) yielded benzophenone 

(3) (about 50%), polymeric material and CO2 if irradiated for some days in CS2 in the pre- 

sence of O2 and eosin as a photosensitizer. The reaction was believed to occur via singlet 

oxygen cycloaddition to give the bis-dioxetane 2 which subsequently decomposed to CO2 and 

two molecules of 32. - 

Ph,C=C=CPh, + 2 '02 -[Ph2!'[;iPh2] - 2 Ph,CO + CO, 

In our hands, 1 did not absorb O2 if irradiated in acetonitrile (MeCNI or acetone - 

(Me2CO) in the presence of rose bengal (RB) for more than 8 hours indicating that the quan- 

tum yield of singlet oxygen oxygenation of 1 is well below 10 
-4 3,4 . 

However, if 1 was irradiated in MeCN in the presence of oxygen and 9,10-dicyanoan- - 

thracene (DCA), 1 consumed rapidly about 2 molecules of 02. Less than 5% of 1 and about 40% 

of 3 (calculated by assuming that 1 yields 2 molecules of 3) were observed besides substan- _ 
tial amounts of resinous products. 

If the DCA-sensitized photooxygenation was carried out in Me2C0, and if, furthermore, 

the solutions were allowed to remain at room temperature for several hours before they were 

worked-up, about 80% of 3, less than 5% of 1, and only small amounts of polymeric material 

were obtained. On the other hand, if the solvent was removed at 15"C/15 Torr immediately 
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after the 02-consumption (about 2.5 moles of oxygen per mole of 1) ceased, - 
trum of the residue dissolved in CDC13 revealed that, in addition to about 

product with signals at 7.18 and 8.33 ppm (singlets, 1O:l) was formed. On 

the 'H NMR spec- 

40% of 3, a new 

standing at room 

temperature, these signals slowly disappeared, giving rise to 'H NMR signals due to 3 _* 

On adding n-pentane to the CDC13-solution, the new product precipitated and could thus 

be separated from 3. According to its elemental analysis, - molecular weight, spectral and che- 

mical properties, this product represents the 1,3-dihydroperoxy-1,1,3,3-tetraphenyl-2-pro- 

panone (8) 5y6. 
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Reduction of 8 with aqueous sodium sulfite yielded 1,3-dihydroxy-1,1,3,3_tetraphenyl- 

E-propanone (9)'; dehydration of 9 afforded the well-known oxetanone derivative 10 'O"'. - - 

Since the DCA-sensitized photooxygenation of 1 does not proceed via singlet oxygen 12 

(see above), an electron-transfer photooxygenation is the most likely oxygenation reaction 

to occur. Thus, singlet excited DCA should interact with 1 to give DCA: and the radical cat- - 
ion of 1 (l+) followed by electron transfer from DCA: to oxygen to give 02: and DCA. Addition - 

of 02: to l+ may yield the peroxyallyl zwitterion 4 which may close the ring to dioxetane 5. - 

Whereas ring-closure of 4 to 5 followed by cleavage of 2 to 2 and diphenylketene (?I'4 
- 

seems 

to be the only reaction in MeCN, there is an additional reaction in Me2C0, MeCN/Me2C0 (2:1), 

and MeCN/cyclopentanone (2:1), in which 4 may be transformed into 8, probably via tetraphe- 

nylcyclopropanone (7) (Scheme l)15'16. - 

In Me2C0, MeCN or methanol, the dihydroperoxy ketone 8 decomposes slowly into 3, CO t - _ 
CO2 (3:1, mass spectroscopically) and H202 and/or water. Addition of catalytic amounts of 

sulfuric acid does not appear to accelerate this process. However, heating or adding 
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catalytic amounts of KOH results in a rapid decomposition. Adding 9,10-diphenylanthracene 

(DPA), tetracene (T), perylene (P), or dibromoperylene to a solution of 8 in CH2C12 or adding 

xanthene dyes such as fluorescein (Fl), eosin (E), and rhodamine B (RhB) to a solution of 8 

in methanol gives rise to the occurrence of (indirect) chemiluminescence which is much en- 

hanced in the presence of a base like potassium t-butoxide or KOH. 

Several mechanisms are discussed for the base-catalyzed decomposition of a-hydroper- 
17-19 

oxy ketones . Scheme 2 illustrates two possible pathways for the decomposition of 8 via - 

energy-rich intermediates. According to paths (a) and (b), 12 cleaves into 3* and the anion - 

13 which suffers a Grob-fragmentation into (unexcited) 3 + OH- + C02; according to paths (c) - - 

and (d), 12 is transformed into 3 t OH'+ 14 followed by decomposition of the a-peroxy lactone - - - 

14 into 3* and C0220'21 . Energy transfer from 3* to the additive22 followed by fluorescence - 
from the singlet excited additive may then terminate the reaction sequence. 

Studies on photosensitized oxygenations of allenes are continued. 

Acknowledgment: Support by Fonds der Chemischen Industrie, Frankfurt am Main, is gratefully 
acknowledged. 
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